
 

Computing Vertical Concepts 

Computer Science 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year 1 

Algorithm is a set of instructions used to solve a 

problem or achieve an objective. Computer 

program turns an algorithm into code that the 

computer. Understand what is wrong with a 

simple algorithm when the steps are out of 

order. An unexpected outcome is due to the 

code and can make logical attempts to fix 

the code. Read code one line at a time and 

make good attempts to envision the bigger 

picture of the overall effect of the program. 

Interpret where the turtle in 2Go challenges 

will end up at the end of the program. 

 

Year 2 

Algorithm is a set of instructions to complete a 

task. Awareness of the need to be precise with 

their algorithms so that they can be successfully 

converted into code. Create a simple program 

that achieves a specific purpose. Identify and 

correct some errors, e.g. Debug Challenges: 

Chimp. Children’s program designs display a 

growing awareness of the need for logical, 

programmable steps. Identify the parts of a 

program that respond to specific events and 

initiate specific actions. Write a cause and 

effect sentence of what will happen in a 

program. 

Year 3 

Turn a simple real-life situation into an 

algorithm for a program by deconstructing it 

into manageable parts. To think about the 

desired task and how this translates into code. 

Identify an error within their program that 

prevents it following the desired algorithm and 

then fix it. To design and code a program that 

follows a simple sequence. Experiment with 

timers to achieve repetition effects in their 

programs. Beginning to understand the 

difference in the effect of using a timer 

command rather than a repeat command 

when creating repetition effects. List a range 

of ways that the Internet can be used to 

provide different methods of communication. 

They can use some of these methods of 

communication, e.g. being able to open, 

respond to and attach files to emails using 

2Email. Describe appropriate email 

conventions when communicating in this way. 

Year 4 

Turn a real-life situation into an algorithm, the 

children’s design shows that they are thinking 

of the required task and how to accomplish this 

in code using coding structures for selection 

and repetition. Intuitive attempts to debug their 

own programs. Timers to achieve repetition 

effects are becoming more logical and are 

integrated into their program designs. ‘IF 

statements’ for selection and attempt to 

combine these with other coding structures 

including variables to achieve the effects that 

they design in their programs. Variables can be 

used to store information while a program is 

executing, they are able to use and 

manipulate the value of variables. User inputs 

and outputs such as ‘print to screen’. e.g. 

2Code. Children’s designs for their programs 

show that they are thinking of the structure of a 

program in logical, achievable steps and 

absorbing some new knowledge of coding 

structures. For example, ‘IF’ statements, 

repetition and variables. They can trace code 

and use step-through methods to identify errors 

in code and make logical attempts to correct 

this. In programs such as Logo, they can ‘read’ 

programs with several steps and predict the 

outcome accurately. Recognise the main 

component parts of hardware which allow 

computers to join and form a network. Online 

safety implications associated with the ways 

the Internet can be used to provide different 

methods of communication is improving. 



 

Computing Vertical Concepts 

Computer Science 

 

 

 

 

 

 

 

 

 

 

 

Year 5 

Attempt to turn more complex real-life 

situations into algorithms for a program by 

deconstructing it into manageable parts. Test 

and debug their programs as they go and 

can use logical methods to identify the 

approximate cause of any bug but may need 

some support identifying the specific line of 

code. Translate algorithms that include 

sequence, selection and repetition into code 

with increasing ease and their own designs 

show that they are thinking of how to 

accomplish the set task in code utilising such 

structures. Combining sequence, selection 

and repetition with other coding structures to 

achieve their algorithm design. Beginning to 

think about their code structure in terms of the 

ability to debug and interpret the code later, 

e.g. the use of tabs to organise code and the 

naming of variables. Value of computer 

networks but are also aware of the main 

dangers. Personal information is and can 

explain how this can be kept safe. Select the 

most appropriate form of online 

communications contingent on audience and 

digital content, e.g. 2Blog, 2Email, Display 

Boards 

Year 6 

Turn a more complex programming task into an 

algorithm by identifying the important aspects 

of the task (abstraction) and then 

decomposing them in a logical way using their 

knowledge of possible coding structures and 

applying skills from previous programs. Test and 

debug their program as they go and use 

logical methods to identify the cause of bugs, 

demonstrating a systematic approach to try to 

identify a particular line of code causing a 

problem. Translate algorithms that include 

sequence, selection and repetition into code 

and their own designs show that they are 

thinking of how to accomplish the set task in 

code utilising such structures, including nesting 

structures within each other. Coding displays 

an improving understanding of variables in 

coding, outputs such as sound and movement, 

inputs from the user of the program such as 

button clicks and the value of functions. 

Interpret a program in parts and can make 

logical attempts to put the separate parts of a 

complex algorithm together to explain the 

program as a whole. Understand and can 

explain in some depth the difference between 

the internet and the World Wide Web. What a 

WAN and LAN are and can describe how they 

access the internet in school. 



 

 

 

 

 

 

 

 

 

 

 

 


